Environmental Interference Cancellation of Speech with the Radial Basis Function Networks: An Experimental Comparison
ثبت نشده
چکیده
In this paper, we use Radial Basis Function Networks (RBFN) for solving the problem of environmental interference cancellation of speech signal. We show that the Second Order ThinPlate Spline (SOTPS) kernel cancels the interferences effectively. For make comparison, we test our experiments on two conventional most used RBFN kernels: the Gaussian and First order TPS (FOTPS) basis functions. The speech signals used here were taken from the OGI Multi-Language Telephone Speech Corpus database and were corrupted with six type of environmental noise from NOISEX-92 database. Experimental results show that the SOTPS kernel can considerably outperform the Gaussian and FOTPS functions on speech interference cancellation problem. Keywords—Environmental interference, interference cancellation of speech, Radial Basis Function networks, Gaussian and TPS kernels.
منابع مشابه
Hyper Radial Basis Function Neural Networks for Interference Cancellation with Nonlinear Processing of Reference Signal
Efficient interference cancellation often requires nonlinear processing of a reference signal. In this paper, hyper radial basis function (HRBF) neural networks for adaptive interference cancellation is developed. We show that the HRBF networks, with an appropriate learning algorithm, is able to approximate the interference signal more efficiently than standard radial basis function (RBF) netwo...
متن کاملHyper Radial Basis Function Neural Network for Nonlinear Interference Cancellation
In this paper the neural network based lter for nonlinear interference cancellation is developed. The Hyper Radial Basis Function (HRBF) network with associated Manhattan learning algorithm is proposed for non-linear noise cancellation under assumption that reference noise is available. The HRBF network is a generalization of radial basis function (RBF) and generalized radial basis function (GR...
متن کاملNovel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملOn the use of back propagation and radial basis function neural networks in surface roughness prediction
Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...
متن کاملComparison Study on Neural Networks in Damage Detection of Steel Truss Bridge
This paper presents the application of three main Artificial Neural Networks (ANNs) in damage detection of steel bridges. This method has the ability to indicate damage in structural elements due to a localized change of stiffness called damage zone. The changes in structural response is used to identify the states of structural damage. To circumvent the difficulty arising from the non-linear n...
متن کامل